Cycloartane Triterpenoids from Astragalus bicuspis

M. Iqbal Choudhary,* Saleem Jan, Ahmed Abbaskhan, Syed Ghulam Musharraf, Samreen, Samina A. Sattar, and Atta-ur-Rahman
HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan

Received March 13, 2008

Abstract

Three new cycloartane glycosides have been isolated from Astragalus bicuspis. They were identified as $6 \alpha-h y d r o x y-$ $3-O$ - β-xylopyranosyloxy-24,25,26,27-tetranor-9,19-cyclolanosta-16,23-lactone (1), 6α-hydroxy-23-methoxy-16 $\beta, 23(R)$ -epoxy-24,25,26,27-tetranor-9,19-cyclolanosta-3- $O-\beta$-xyloside (2), and $23(R), 24(S), 25(R), 26(S)-16 \beta / 23,23 / 26,24 / 25-$ triepoxy-6 $\alpha, 26$-dihydroxy-9,19-cyclolanosta-3- O - β-xyloside (3), on the basis of their spectroscopic data. Two known cycloartane derivatives, $\mathbf{4}$ and $\mathbf{5}$, were also obtained from this plant. Compounds $\mathbf{2 - 5}$ were tested for leishmanicidal activity against Leishmania major promastigotes and for cytotoxicity against 3T3 cancer cells.

Various species of Astragalus (Leguminosae) represent old and well-known drugs in traditional medicine used as antiperspirants, diuretics, and tonics, ${ }^{1}$ and for the treatment of nephritis, diabetes, leukemia, and uterine cancer. ${ }^{2}$ Astragalus plants have attracted considerable attention due to their cytotoxic constituents. ${ }^{3}$ Some Astragalus constituents also stimulate lymphocyte transfer in vitro, ${ }^{4}$ while some cycloartane-type triterpene glycosides, isolated from the genus Astragalus, have exhibited antitumor, immunodepressant, antiviral, and leishmanicidal activities. ${ }^{5,6}$
In continuation of our phytochemical studies on pharmacologically interesting natural products, we isolated three new cycloartane triterpene derivatives ($\mathbf{1} \mathbf{- 3}$) and two known compounds ($\mathbf{4}$ and $\mathbf{5}$) from a methanolic extract of Astragalus bicuspis Fisk. (Leguminosae). Compounds 2-5 were also screened for their activity against Leishmania major promastigotes and for cytotoxicity against 3T3 cancer cells.

Results and Discussion

The whole plant of A. bicuspis was extracted with 80% aqueous MeOH . The crude methanolic extract was fractionated by vacuum liquid chromatography (silica gel). The fraction eluted with 30% MeOH in CHCl_{3} was chromatographed further on silica gel and polyamides to obtain compounds $\mathbf{1 - 5}$.

Compound 1 was obtained as an amorphous solid. The [M + $\mathrm{H}]^{+}$peak in the ESI-QTOF-MS spectrum (m / z 549.3426) corresponded to the formula $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{O}_{8}$. The MS-MS experiment afforded an ion at $m / z 417$ consistent with the loss of a pentose sugar. Other significant peaks were at $m / z 399[\mathrm{M}+\mathrm{H}-$ pentose $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}$and $381\left[\mathrm{M}+\mathrm{H}-\text { pentose }-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$. The IR spectrum showed $\mathrm{OH}\left(3419 \mathrm{~cm}^{-1}\right)$ and lactone (1728 and $1254 \mathrm{~cm}^{-1}$) absorptions.

The cycloartane-type skeleton was evident from ${ }^{1} \mathrm{H}$ NMR signals characteristic of cyclopropyl protons at $\delta_{\mathrm{H}} 0.53$ and 0.18 (each d, $\left.J_{\mathrm{AX}}=3.6 \mathrm{~Hz}, \mathrm{CH}_{2}-19\right)$ and four tertiary methyls at $\delta_{\mathrm{H}} 0.97\left(\mathrm{CH}_{3}-\right.$ 30), $1.01\left(\mathrm{CH}_{3}-18\right), 1.29\left(\mathrm{CH}_{3}-29\right)$, and $1.96\left(\mathrm{CH}_{3}-28\right)$, along with a secondary methyl at $\delta_{\mathrm{H}} 0.92$ (d, $\left.J_{21,20}=4.2 \mathrm{~Hz}, \mathrm{CH}_{3}-21\right)$. Two oxygen-bearing methine signals appeared at $\delta_{\mathrm{H}} 3.61$ (dd, $J_{3,2 \beta}=$ $11.7 \mathrm{~Hz}, J_{3,2 \alpha}=3.7 \mathrm{~Hz}, \mathrm{H}-3$) and 3.76 (m, H-6). The NMR data of compound $\mathbf{1}$ (see Experimental Section) were consistent with a tetranor-cycloartane $3-O-\beta$-xyloside. ${ }^{7,8}$ The ${ }^{13} \mathrm{C}$ NMR spectrum exhibited signals for 31 carbons, 26 of which were assigned to the aglycone moiety and five to a xylose unit. The ${ }^{13} \mathrm{C}$ NMR spectrum supported cyclolanostanol as the aglycone, with signals for the cyclopropane methylene carbon at $\delta_{\mathrm{C}} 29.0$ (C-19), five methyl

[^0]

carbons at $\delta_{\mathrm{C}} 19.4$ (C-18), 21.2 (C-21), 28.6 (C-28), 16.6 (C-29), and 19.9 (C-30), oxygen-bearing methine carbons at $\delta_{\mathrm{C}} 88.5$ (C-3), 67.0 (C-6), and 80.6 (C-16), and a lactone carbonyl carbon at $\delta_{\mathrm{C}} 173.9$ (C-23). Considering the degree of unsaturation and IR absorption bands at 1728 and $1254 \mathrm{~cm}^{-1}$, the oxygenated carbon signal at $\delta_{\mathrm{C}} 80.6$ (C-16) was incorporated into a δ-lactone ring. The presence of a lactone was also deduced from the ${ }^{3} J$ correlations of $\delta_{\mathrm{H}} 2.41$ and $2.21(\mathrm{H}-22)$ with the ester carbonyl carbon and also by ${ }^{3} J$ correlation of the methine proton signal at $\delta_{\mathrm{H}} 4.73(\mathrm{H}-16)$ with the ester carbonyl carbon. The presence of an OH at $\mathrm{C}-6$ was inferred from its chemical shift ($\delta_{\mathrm{C}} 67.0$) and also from the ${ }^{2} J$ correlations of H-5 ($\delta_{\mathrm{H}} 1.75, \mathrm{~d}, J_{5 \alpha, 6 \beta}=8.1 \mathrm{~Hz}$) with C-6. The chemical shifts of the 4α-methyl protons $\mathrm{CH}_{3}-28$ ($\delta_{\mathrm{H}} 1.96$) and C-5 ($\delta_{\mathrm{C}} 53.7$) were also consistent with this inferrence. ${ }^{9}$ The
orientation of H-6 was assigned to be β on the basis of a NOE between H-6 and $\mathrm{CH}_{3}-29$ and between $\mathrm{H}-6$ and $\mathrm{H}_{2}-19$, indicating the presence of $6 \alpha-\mathrm{OH}$. The α-orientation of H-16 was deduced on the basis of a NOE between $\mathrm{H}-16, \mathrm{CH}_{3}-30$, and $\mathrm{H}-17 \alpha$. The NMR spectra of 1 showed an anomeric proton at $\delta_{\mathrm{H}} 4.90$ (d, $J_{1^{\prime}, 2^{\prime}}$ $=7.1 \mathrm{~Hz}$) with corresponding carbon at $\delta_{\mathrm{C}} 107.6$. Comparison of NMR data with those reported in the literature indicated a β-oriented xyloside. ${ }^{10}$ Substitution of xylose at C-3 was inferred from the downfield chemical shift of C-3 $\left(\delta_{\mathrm{C}} 88.5\right)^{11}$ and HMBC cross-peaks between anomeric $\mathrm{H}-1^{\prime}$ and $\mathrm{C}-3$. Thus, compound $\mathbf{1}$ was deduced to be 6α-hydroxy- 3 - $O-\beta$-xylopyranosyloxy- $24,25,26,27$-tetranor-9,19-cyclolanosta-16,23-lactone and was named bicusposide-A.

Compound $\mathbf{2}$ was isolated as a white, amorphous powder having the molecular formula $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{8}$ (ESI-QTOF-MS showed a pseudomolecular ion at $m / z 563.3622[\mathrm{M}-\mathrm{H}]^{-}$). The CID-MS experiment showed an $[\mathrm{M}-\mathrm{H}]^{-}$ion at $\mathrm{m} / \mathrm{z} 563$ and a significant peak at m / z $431\left[\mathrm{M}-\mathrm{H}-\right.$ pentose $^{-}$, representing the aglycone. The NMR data of compound $\mathbf{2}$, except for the lactone ring, were distinctly similar to the NMR spectra of compound 1 (see Experimental Section), except that 2 contained an acetal, instead of a lactone. This was inferred from the absence of lactone absorptions in the IR spectrum and the appearance of additional signals for a methoxy group [$\delta_{\mathrm{H}} 3.35$ (s) and $\delta_{\mathrm{C}} 54.6$] and an acetal methine carbon [δ_{H} $4.79\left(\mathrm{t}, J_{23,22}=7.2 \mathrm{~Hz}\right)$ and $\left.\delta_{\mathrm{C}} 100.4\right]$ in the ${ }^{1} \mathrm{H} \mathrm{NMR}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The other chemical shift differences between the two compounds were for $\mathrm{C}-16$ [$\delta_{\mathrm{C}} 80.6$ for $\mathbf{1}$ and $\delta_{\mathrm{C}} 70.7$ for 2] and C-23 [$\delta_{\mathrm{C}} 173.9$ for $\mathbf{1}$ and $\delta_{\mathrm{C}} 100.4$ for 2]. α-Orientation of the methoxy group at C-23 was deduced from the ROESY spectrum, in which a methine signal at $\delta_{\mathrm{H}} 4.34(\mathrm{H}-16)$ showed a cross-peak with the signal at $\delta_{\mathrm{H}} 3.35\left(\mathrm{OCH}_{3}-23\right)$.

Thus, 2 was deduced to be 6α-hydroxy-23-methoxy-16 $\beta, 23(R)$ -epoxy-24,25,26,27-tetranor-9,19-cyclolanosta-3- $O-\beta$-xyloside and was given the trivial name bicusposide-B.

Compound 3 was obtained as a colorless powder with a [M -$\mathrm{H}]^{-}$ion at $\mathrm{m} / \mathrm{z} 633.3662\left(\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{O}_{10}\right)$. The MS-MS showed a significant aglycone peak at $m / z 501[\mathrm{M}-\mathrm{H}-\text { pentose }]^{-}$. The IR spectrum showed an OH band at $3427 \mathrm{~cm}^{-1}$. Cyclopropane methylene signals were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 at $\delta_{\mathrm{H}} 0.21$ and 0.52 (each $1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AX}}=3.8 \mathrm{~Hz}$), with a corresponding resonance at $\delta_{\mathrm{C}} 29.7$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum also showed five tertiary methyl singlets at $\delta_{\mathrm{H}} 1.18,1.72,1.94,1.27$, and 0.90 , with corresponding carbons at $\delta_{\mathrm{C}} 19.5,13.2,28.7,16.6$, and 20.2 , respectively, in the ${ }^{13} \mathrm{C}$ NMR spectrum. A signal at $\delta_{\mathrm{H}} 0.94\left(\mathrm{CH}_{3}-21, \mathrm{~d}, J_{21,20}=5.1 \mathrm{~Hz}\right)$ indicated a secondary methyl resonating at $\delta_{\mathrm{C}} 20.6$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. Compound 3 had 16/23-, 23/26-, and 24/25-epoxy moieties (H-16: $\delta_{\mathrm{H}} 4.57 ; \mathrm{C}-16: \delta_{\mathrm{C}} 74.5 ; \mathrm{C}-23: \delta_{\mathrm{C}} 105.9 ; \mathrm{H}-26: \delta_{\mathrm{H}} 5.80 ; \mathrm{C}-26: \delta_{\mathrm{C}}$ 97.7; C-23: $\left.\delta_{\mathrm{C}} 105.9 ; \mathrm{H}-24: \delta_{\mathrm{H}} 3.82 ; \mathrm{C}-24: \delta_{\mathrm{C}} 64.1 ; \mathrm{C}-25: \delta_{\mathrm{C}} 63.7\right)$, hemiacetal moiety (H-26: $\left.\delta_{\mathrm{H}} 5.80 ; \mathrm{C}-26: \delta_{\mathrm{C}} 97.7 ; \mathrm{C}-23: \delta_{\mathrm{C}} 105.9\right)$, and a β-xylopyranosyl moiety ($\mathrm{H}-1^{\prime}: \delta_{\mathrm{H}} 4.88, \mathrm{~d}, J_{1^{\prime}, 2^{\prime}}=7.3 \mathrm{~Hz}$; $\mathrm{C}-1: \delta_{\mathrm{C}} 107.6$, other signals: $\delta_{\mathrm{H}} 3.71-4.34 ; \delta_{\mathrm{C}} 67.0-78.5$).

Acetylation of compound $\mathbf{3}$ gave a penta-acetate $\left(\mathbf{6}, \mathrm{C}_{45} \mathrm{H}_{64} \mathrm{O}_{15}\right)$, indicating that $\mathbf{3}$ had five OH groups: three of the xylose and two of the aglycone. A multiplet at $\delta_{\mathrm{H}} 3.70$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 displayed a shift to $\delta_{\mathrm{H}} 4.97$ in the penta-acetate (6), so the fourth OH was assigned at C-6. Similarly, a peak at δ_{H} 6.56 was due to the hemiacetal proton.

The relative configuration of $\mathbf{3}$ was determined on the basis of NOE experiments. The signal at $\delta 4.57(\mathrm{H}-16)$ showed cross-peaks with the signals at $\delta 0.90(\mathrm{H}-30)$ and $1.65(\mathrm{H}-17 \alpha)$ in the ROESY spectrum, indicating β-orientation of the $16-\mathrm{OH}$. The β-orientation of H-6 was deduced from NOEs between H-6 and $29-\mathrm{CH}_{3}$ and between H-6 and $\mathrm{H}_{2}-19$. The methine proton at $\delta_{\mathrm{H}} 3.82(\mathrm{H}-24)$ showed cross-peaks with the signals at $\delta_{\mathrm{H}} 1.72\left(\mathrm{CH}_{3}-27\right), 1.18$ $\left(\mathrm{CH}_{3}-18\right), 1.94(\mathrm{H}-20)$, and $5.80(\mathrm{H}-26)$ in the ROESY spectrum of compound 3 . Thus, the configurations at $\mathrm{C}-23, \mathrm{C}-24, \mathrm{C}-25$, and C-26 were tentatively assigned as R, S, R, and S, respectively, by
comparing with $\mathrm{CH}_{3}-18$ and $\mathrm{H}-20$ and assuming the same configuration at $\mathrm{CH}_{3}-18$ and $\mathrm{H}-20$ as in other compounds in this series based on biogenetic considerations. This assumption was supported by NOE difference spectra, in which irradiation of $18-\mathrm{CH}_{3}$ resulted in an increase in the signal intensity of the $\mathrm{H}-24 .{ }^{12}$ On the basis of these observations, the structure of compound $\mathbf{3}$ was deduced to be $23(R), 24(S), 25(R), 26(S)-16 \beta / 23,23 / 26,24 / 25$-triepoxy- $6 \alpha, 26$-di-hydroxy-9,9-cyclolanosta-3-O- β-xyloside and was named bicuspo-side-C.

Compound 4 was identical in all respects to cyclosiversigenin, while compound 5 was identified as $3-O-\beta$-D-xylocyclosiversigenin, both reported earlier from Astragalus species. ${ }^{13}$

Compounds 2-5 were evaluated for their leishmanicidal and cytotoxic potential. Amphtericine $\mathrm{B}\left(\mathrm{IC}_{50} 0.54 \pm 0.02 \mu \mathrm{~mol}\right)$ and pentamidine ($\mathrm{IC}_{50} 4.32 \pm 0.09 \mu \mathrm{~mol}$) were used as standard drugs in the leishmanicidal assay. Compounds $\mathbf{3}$ and $\mathbf{5}$ showed only modest leishmanicidal activity ($\mathrm{IC}_{50} 64.35 \pm 0.60 \mu \mathrm{~mol}$ for 3 and $56.51 \pm 0.28 \mu \mathrm{~mol}$ for $\mathbf{5}$). These compounds were also screened for cytotoxicicty against 3 T 3 fibroblast cells, and moderate cytotoxicity was exhibited by compound $\mathbf{5}\left(\mathrm{IC}_{50} 19.51 \pm 5.3 \mu \mathrm{~mol}\right)$, as compared to the standard drug, cycloheximide ($\mathrm{IC}_{50} 0.912 \mu \mathrm{~mol}$).

Experimental Section

General Experimental Procedures. Optical rotations were measured on a digital JASCO DIP-360 polarimeter in MeOH. IR spectra were recorded as KBr discs on a JASCO A-302 spectrophotometer. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AV-300 spectrometer operating at $300\left({ }^{1} \mathrm{H}\right.$ NMR $)$. The ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV-300 and AV-400 spectrometers operating at 75 and 100 MHz , respectively. HMQC and HMBC spectra were recorded on a Bruker AV-400 spectrometer. Chemical shifts are reported in $\delta(\mathrm{ppm})$, referenced with respect to the residual solvent signal of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, and coupling constants (J) were measured in Hz . Mass spectra were recorded on a Q-STAR XL (Applied Biosystem). Each compound ($4 \mu \mathrm{~g} / \mathrm{mL}$, dissolved in acetonitrile/ $0.1 \% \mathrm{HCOOH}_{\text {aq }}$ (2:1)) was directly infused into the mass spectrometer at a flow rate of $3 \mu \mathrm{~L} / \mathrm{min}$ to acquire full scan and product ion mass spectra. The electrospray voltage at the spraying needle was optimized at 5200 and -5200 V for positive and negative modes of ionization, respectively. Low-energy collisioninduced dissociation (CID) experiments were performed by using nitrogen (CID gas valve set to 4) as collision gas, and a collision energy of $10-40 \mathrm{eV}$ was used. TLC was performed on precoated silica gel plates (DC-Alugram $60 \mathrm{UV}_{254}$, E. Merck), and the spots were observed, first under UV light (254 nm) and then stained with cerium(IV) sulfate spray reagent and heated until coloration developed. Polyamide-6 DF (Riedel-De Haen AG) and silica gel (E. Merck, 160-200 $\mu \mathrm{m}$ mesh) were used as stationary phases in column chromatography (CC).

Plant Material. The whole plant of A. bicuspis was collected in Khaltaran-Haramosh, Gilgit (Pakistan), in July 2003. A voucher specimen (\#67854) was deposited at the Herbarium of the Department of Botany, University of Karachi, Karachi.

Extraction and Isolation. The collected plant material was kept in the dark and air-dried for 3 days. The air-dried plant material (2 kg) was chopped into thick pieces and extracted with 80% aqueous MeOH ($3 \times 20 \mathrm{~L}$, each soaking was continued for 1 week). The resulting extract was filtered and concentrated. The crude methanolic extract (120 g) was subjected to vacuum liquid chromatography (VLC) on silica gel ($1000 \mathrm{~g}, 160-200 \mu \mathrm{~m}$). Elution was carried out with solvents of increasing polarity: $30 \% \mathrm{CHCl}_{3} /$ hexane $\left(5 \mathrm{~L} \times 3\right.$), $50 \% \mathrm{CHCl}_{3} /$ hexane ($5 \mathrm{~L} \times 2$), $70 \% \mathrm{CHCl}_{3} /$ hexane $(5 \mathrm{~L} \times 3), \mathrm{CHCl}_{3}(5 \mathrm{~L} \times 3$), $30 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}(10 \mathrm{~L} \times 3), 50 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}(10 \mathrm{~L} \times 2), 100 \%$ $\mathrm{MeOH}(15 \mathrm{~L})$. Seven main fractions (1-7) were obtained. Fraction 5 (40 g , eluted with $30 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$), rich in saponins, was separated by CC on silica gel eluted successively with acetone/hexane ($20: 80$; 30:70; 40:60; 50:50; 60:40; 80:20; 100:0) to afford seven subfractions (A-G). Subfraction A (3 g , eluted with 20% acetone/hexane) was subjected to silica gel $\mathrm{CC}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}, 2: 98\right)$, which afforded compound 4. Subfraction E (9 g , eluted with 60% acetone/hexane) was subjected to polyamide CC with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ as eluting solvents in a gradient manner, which yielded nine fractions $\left(1^{\prime}-9^{\prime}\right)$. Fraction 5^{\prime} (4 g , eluted with $2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$), after silica gel $\mathrm{CC}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right.$, 1:10), yielded compound 5. Two fractions, $8^{\prime}(3 \mathrm{~g}$, eluted with 3%
$\mathrm{MeOH} / \mathrm{CHCl}_{3}$) and $9^{\prime}\left(3 \mathrm{~g}\right.$, eluted with $3 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$), were combined on the basis of similar TLC behavior and rechromatographed over silica gel ($\mathrm{MeOH} / \mathrm{CHCl}_{3}, 1: 10$) to obtain compounds $\mathbf{1 - 3}$.
Bicusposide A (1): amorphous solid (3 mg); $[\alpha]^{25} \mathrm{D}-4.0$ (c 0.5 , $\mathrm{MeOH})$; IR $\nu_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1} 3419(\mathrm{OH})$, 1728, 1254 (lactone); ESI-QTOF-MS-MS on $m / z 549[\mathrm{M}+\mathrm{H}]^{+}$(ce 15 eV) $\mathrm{m} / \mathrm{z}(\%) 549$ (18), 531 (2), 417 (65), 399 (100), 381 (79), 363 (7), 277 (6), 123 (10); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta_{\mathrm{H}} 4.73\left(1 \mathrm{H}, \mathrm{q}, J_{16,15 \text { and } 17}=7.0 \mathrm{~Hz}, \mathrm{H}-16\right)$, $3.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.61\left(1 \mathrm{H}, \mathrm{dd}, J_{3,2 \beta}=11.7 \mathrm{~Hz}, J_{3,2 \alpha}=3.7 \mathrm{~Hz}, \mathrm{H}-3\right)$, 2.41 (1 H , ovlp, H-2a), 2.41 (1 H , ovlp, H-22a), 2.21 (1 H , ovlp, H-22b), $2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{a}), 2.00(1 \mathrm{H}$, ovlp, H-2b), 1.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28$), 1.92 (1 H , ovlp, H-17), 1.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-20$), 1.87 (1 H, ovlp, H-8), $1.82(1 \mathrm{H}$, m, H-11a), $1.77(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}), 1.75\left(1 \mathrm{H}, \mathrm{d}, J_{5 \alpha, 6 \beta}=8.1 \mathrm{~Hz}, \mathrm{H}-5\right)$, $1.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{~b}), 1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 1.59(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}), 1.49$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$), 1.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{~b}$), 1.29 (3H, s, H-29), 1.25 (1 H , $\mathrm{m}, \mathrm{H}-11 \mathrm{~b}), 1.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 0.97(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30)$, $0.92\left(3 \mathrm{H}, \mathrm{d}, J_{21,20}=4.2 \mathrm{~Hz}, \mathrm{CH}_{3}-21\right), 0.18,0.53\left(1 \mathrm{H}\right.$ each, d, $J_{\mathrm{AX}}=$ $3.6 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a}$ and 19b, respectively); sugar moiety $\delta_{\mathrm{H}} 4.90(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2^{\prime}}=7.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 4^{\prime}}=10.9 \mathrm{~Hz}, J_{5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}}=4.8\right.$, $\left.\mathrm{H}-5^{\prime} \mathrm{a}\right), 4.22\left(1 \mathrm{H}\right.$, ovlp, H-4'), $4.15\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime}, 2^{\prime}}\right.$ and $\left.4^{\prime}=8.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $4.07\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{H}-2^{\prime}\right), 3.69\left(1 \mathrm{H}\right.$, ovlp, $\left.\mathrm{H}-5^{\prime} \mathrm{b}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta_{\mathrm{C}} 173.9(\mathrm{C}, \mathrm{C}-23), 88.5(\mathrm{CH}, \mathrm{C}-3), 80.6(\mathrm{CH}, \mathrm{C}-16), 67.0$ (CH, C-6), 54.1 (CH, C-17), 53.7 (CH, C-5), 46.6 (C, C-13), 45.7 (CH, $\mathrm{C}-8), 44.8(\mathrm{C}, \mathrm{C}-14), 43.4\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 42.6(\mathrm{C}, \mathrm{C}-4), 38.8\left(\mathrm{CH}_{2}, \mathrm{C}-22\right)$, $37.8\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 32.3\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 32.3\left(\mathrm{CH}_{2}, \mathrm{C}-12\right), 30.2\left(\mathrm{CH}_{2}, \mathrm{C}-2\right)$, 29.1 (C, C-10), $29.0\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 28.6\left(\mathrm{CH}_{3}, \mathrm{C}-28\right), 27.3(\mathrm{CH}, \mathrm{C}-20)$, $26.0\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 21.2\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 21.1(\mathrm{C}, \mathrm{C}-9), 19.9\left(\mathrm{CH}_{3}, \mathrm{C}-30\right)$, $19.4\left(\mathrm{CH}_{3}, \mathrm{C}-18\right), 16.6\left(\mathrm{CH}_{3}, \mathrm{C}-29\right)$; sugar moiety $\left.\delta_{\mathrm{C}} 107.6(\mathrm{CH}, \mathrm{C}-1)^{\prime}\right)$, 78.6 (CH, C-3'), 75.6 (CH, C-2'), $71.3\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 67.1\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right)$); ESI-QTOF-MS, $m / z 549.3426[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{O}_{8}\right.$, calcd for 549.3477).

Bicusposide B (2): amorphous solid (6 mg); $[\alpha]^{25} \mathrm{D}-4.4$ (c 0.5 , $\mathrm{MeOH})$; IR $\nu_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1} 3418(\mathrm{OH})$; ESI-QTOF-MS-MS on m / z $563[\mathrm{M}-\mathrm{H}]^{-}(\mathrm{ce}-20 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%): 563$ (13), 431 (3), 413 (100), 395 (13), 89 (13); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$) $\delta_{\mathrm{H}} 4.79\left(1 \mathrm{H}, \mathrm{t}, J_{23,22}=7.2\right.$ $\mathrm{Hz}, \mathrm{H}-23), 4.34(1 \mathrm{H}$, ovlp, H-16), $3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.62(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3,2 \beta}=11.4 \mathrm{~Hz}, J_{3,2 \alpha}=4.4 \mathrm{~Hz}, \mathrm{H}-3\right), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.39(1 \mathrm{H}$, ovlp, H-2a), 2.00 (1 H , ovlp, H-2b), $1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28), 1.92(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{8 \beta, 7 \alpha}=10.6 \mathrm{~Hz}, J_{8 \beta, 7 \beta}=4.5 \mathrm{~Hz}, \mathrm{H}-8\right), 1.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{a}), 1.89(1 \mathrm{H}$, m, H-11a), 1.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-20$), 1.84 (1 H , ovlp, H-22a), 1.73 ($1 \mathrm{H}, \mathrm{d}$, $\left.J_{5 \alpha, 6 \beta}=8.9 \mathrm{~Hz}, \mathrm{H}-5\right), 1.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}), 1.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}), 1.64$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 1.62(\mathrm{~m}, \mathrm{H}-17), 1.61(1 \mathrm{H}$, ovlp, H-22b), $1.59(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-15 \mathrm{~b}), 1.49(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-29), 1.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{~b})$, $1.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{~b}), 1.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 1.13$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), 0.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30$), $0.85\left(3 \mathrm{H}, \mathrm{d}, J_{21,20}=6.3 \mathrm{~Hz}, \mathrm{H}-21\right), 0.22,0.54$ (1 H each, d, $J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a}$ and 19 b , respectively); sugar moiety $\delta_{\mathrm{H}} 4.90$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 4^{\prime}}=11.2 \mathrm{~Hz}, J_{5^{\prime}, \mathrm{a}, 5^{\mathrm{b}}}=\right.$ $\left.5.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime} \mathrm{a}\right), 4.21\left(1 \mathrm{H}\right.$, ovlp, $\left.\mathrm{H}-4^{\prime}\right), 4.14\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime}, 2^{\prime}}\right.$ and $4^{\prime}=8.5 \mathrm{~Hz}$, $\left.\mathrm{H}-3^{\prime}\right), 4.05\left(1 \mathrm{H}, \mathrm{brt}\right.$ t H-2'), 3.71 (1 H , ovlp, H-5'b); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}} 100.4(\mathrm{C}, \mathrm{C}-23), 88.6(\mathrm{CH}, \mathrm{C}-3), 70.7(\mathrm{CH}, \mathrm{C}-16), 67.4(\mathrm{CH}, \mathrm{C}-6)$, $56.6(\mathrm{CH}, \mathrm{C}-17), 54.6\left(\mathrm{OCH}_{3}\right), 53.9(\mathrm{CH}, \mathrm{C}-5), 46.2(\mathrm{CH}, \mathrm{C}-8), 46.1$ (C, C-13), 44.8 (C, C-14), $43.5\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 42.7(\mathrm{C}, \mathrm{C}-4), 38.5\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-22), 37.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 33.3\left(\mathrm{CH}_{2}, \mathrm{C}-12\right), 32.4\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 30.3\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-2), 29.6\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 29.2(\mathrm{C}, \mathrm{C}-10), 28.7\left(\mathrm{CH}_{3}, \mathrm{C}-28\right), 26.2\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-11), 25.6(\mathrm{CH}, \mathrm{C}-20), 21.2(\mathrm{C}, \mathrm{C}-9), 20.5\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 20.2\left(\mathrm{CH}_{3}\right.$, $\mathrm{C}-30), 19.5\left(\mathrm{CH}_{3}, \mathrm{C}-18\right), 16.6\left(\mathrm{CH}_{3}, \mathrm{C}-29\right)$; sugar moiety $\delta_{\mathrm{C}} 107.6(\mathrm{CH}$, $\left.\mathrm{C}-1^{\prime}\right), 78.5\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 75.6\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 71.3\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 67.1\left(\mathrm{CH}_{2}\right.$, C-5'); ESI-QTOF-MS, $m / z 563.3622[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{8}\right.$, calcd for 563.3589).

Bicusposide C (3): amorphous solid (10 mg); $[\alpha]^{25} \mathrm{D}-4.8$ (c 0.5 , $\mathrm{MeOH})$; IR $\nu_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1} 3427(\mathrm{OH})$; ESI-QTOF-MS-MS on m / z $633[\mathrm{M}-\mathrm{H}]^{-}$(ce 40 eV$) \mathrm{m} / \mathrm{z}(\%) 633$ (17), 549 (94), 501 (23), 483 (23), 417 (88), 401 (20), 131 (23), 111 (26), 83 (64), 71 (100); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$) $\delta_{\mathrm{H}} 5.80(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-26), 4.57\left(1 \mathrm{H}, \mathrm{q}, J_{16,15}\right.$ and $\left.{ }_{17}=7.4 \mathrm{~Hz}, \mathrm{H}-16\right), 3.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-24), 3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.59(1 \mathrm{H}$, dd, $\left.J_{3,2 \beta}=11.5 \mathrm{~Hz}, J_{3,2 \alpha}=4.6 \mathrm{~Hz} \mathrm{~Hz}, \mathrm{H}-3\right), 2.40(1 \mathrm{H}$, ovlp, H-2a), 2.19 (1 H , ovlp, H-22a), 1.98 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{a}$), 1.95 (1 H , ovlp, H-2b), $1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28), 1.94$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-20$), 1.88 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}$), 1.87 $\left(1 \mathrm{H}, \mathrm{dd}, J_{8 \beta, 7 \alpha}=11.4 \mathrm{~Hz}, J_{8 \beta, 7 \beta}=5.2 \mathrm{~Hz}, \mathrm{H}-8\right), 1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a})$, 1.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27$), 1.72 (1 H, ovlp, H-5), 1.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$), 1.64 (1 H , ovlp, H-22b), $1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{~b}), 1.57(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7 \mathrm{~b}), 1.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}), 1.27$ (3H, s, H-29), $1.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{~b}$), $1.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{~b}), 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 0.94$ ($3 \mathrm{H}, \mathrm{d}, J_{21,20}=5.1 \mathrm{~Hz}, \mathrm{H}-21$), $0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 0.21,0.52$ (1 H each, d, $J_{\mathrm{AX}}=3.8 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a}$ and 19 b , respectively); sugar moiety $\delta_{\mathrm{H}} 4.88$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.34\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 4^{4}}=10.9 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime} \mathrm{b}}=\right.$
$\left.4.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime} \mathrm{a}\right), 4.20\left(1 \mathrm{H}\right.$, ovlp, $\left.\mathrm{H}-4^{\prime}\right), 4.14\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime}, 2^{\prime}}\right.$ and $4^{\prime}=8.4 \mathrm{~Hz}$, $\left.\mathrm{H}-3^{\prime}\right), 4.05\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{H}-2^{\prime}\right), 3.71\left(1 \mathrm{H}\right.$, ovlp, $\left.\mathrm{H}-5^{\prime} \mathrm{b}\right)$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta_{\mathrm{C}} 105.9(\mathrm{C}, \mathrm{C}-23), 97.7(\mathrm{CH}, \mathrm{C}-26), 88.6(\mathrm{CH}, \mathrm{C}-3), 74.5$ (CH, C-16), 67.4 (CH, C-6), 64.1 (CH, C-24), 63.7 (C, C-25), 56.4 (CH, C-17), 53.7 (CH, C-5), 46.2 (C, C-13), 46.1 (CH, C-8), 44.7 (C, $\mathrm{C}-14), 43.7\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 42.6(\mathrm{C}, \mathrm{C}-4), 42.5\left(\mathrm{CH}_{2}, \mathrm{C}-22\right), 38.2\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-7), 33.2\left(\mathrm{CH}_{2}, \mathrm{C}-12\right), 32.4\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 30.3\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 29.7\left(\mathrm{CH}_{2}\right.$, C-19), 29.2 (C, C-10), $28.7\left(\mathrm{CH}_{3}, \mathrm{C}-28\right), 26.2(\mathrm{CH}, \mathrm{C}-20), 26.1\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-11), 21.1(\mathrm{C}, \mathrm{C}-9), 20.6\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 20.2\left(\mathrm{CH}_{3}, \mathrm{C}-30\right), 19.5\left(\mathrm{CH}_{3}\right.$, $\mathrm{C}-18), 16.6\left(\mathrm{CH}_{3}, \mathrm{C}-29\right), 13.2\left(\mathrm{CH}_{3}, \mathrm{C}-27\right)$; sugar moiety $\delta_{\mathrm{C}} 107.6(\mathrm{CH}$, C-1'), $78.5\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 75.6\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 71.3\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 67.0\left(\mathrm{CH}_{2}\right.$, C-5'); ESI-QTOF-MS, $m / z 633.3662[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{O}_{10}\right.$, calcd for 633.3644).

Acetylation of 3. Compound $\mathbf{3}$ was acetylated with $\mathrm{Ac}_{2} \mathrm{O} /$ pyridine at room temperature. The crude product (8 mg) was subjected to CC on silica gel with hexane/EtOAc (90:10) to yield compound $6(3 \mathrm{mg})$: colorless powder, $\mathrm{C}_{45} \mathrm{H}_{64} \mathrm{O}_{15},[\alpha]^{25}{ }_{\mathrm{D}}-14.4$ (c 0.125 , MeOH); IR $\nu_{\text {max }}$ $(\mathrm{KBr}) \mathrm{cm}^{-1} 3408(\mathrm{OH}), 1728$ (ester); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \delta_{\mathrm{H}}$ $6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-26), 4.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 4.44\left(1 \mathrm{H}, \mathrm{q}, J_{16,15}\right.$ and $17=7.4$ $\mathrm{Hz}, \mathrm{H}-16), 3.87(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-24), 3.34\left(1 \mathrm{H}, \mathrm{dd}, J_{3,2 \beta}=11.6 \mathrm{~Hz}, J_{3,2 \alpha}=\right.$ $4.4 \mathrm{~Hz}, \mathrm{H}-3), 1.51$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-27$), 1.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-28$), 1.03 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), $1.00(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-29), 0.96\left(3 \mathrm{H}, \mathrm{d}, J_{21,20}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}-21\right), 0.89(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-30$), 2.13, 2.10, 2.08, 2.03, 1.96 (3 H , each, s, $5 \times \mathrm{OAc}$), $0.14,0.47$ (1 H each, d, $J_{\mathrm{AX}}=4.5 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a}$ and 19b, respectively); sugar moiety $\delta_{\mathrm{H}} 5.72\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime}, 2^{\prime}}\right.$ and $\left.4^{\prime}=9.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.46\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 1^{\prime} \text { and } 3^{\prime}}=8.4\right.$ $\left.\mathrm{Hz}, \mathrm{H}-2^{\prime}\right), 5.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.4, \mathrm{H}-1^{\prime}\right), 4.33$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 4^{\prime}}=11.5 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime} \mathrm{b}}=5.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime} \mathrm{a}\right), 3.70(1 \mathrm{H}$, ovlp, $\mathrm{H}-5^{\prime} \mathrm{b}$); ${ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta_{\mathrm{C}} 103.4$ (C, C-23), 96.1 (CH, C-26), 87.8 (CH, C-3), 74.7 (CH, C-16), 62.8 (CH, C-24), $62.5(\mathrm{CH}$, C-6), 62.0 (C, C-25), 55.7 (CH, C-17), 49.4 (CH, C-5), 45.9 (C, C-13), 44.7 (C, C-14), 43.9 (CH, C-8), $43.0\left(\mathrm{CH}_{2}, \mathrm{C}-15\right)$, 41.8 (C, C-4), 40.9 $\left(\mathrm{CH}_{2}, \mathrm{C}-22\right), 32.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 32.5\left(\mathrm{CH}_{2}, \mathrm{C}-12\right), 31.4\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 29.4$ ($\left.\mathrm{CH}_{2}, \mathrm{C}-2\right), 29.2(\mathrm{C}, \mathrm{C}-10), 27.0\left(\mathrm{CH}_{2}, \mathrm{C}-19\right), 26.1\left(\mathrm{CH}_{3}, \mathrm{C}-28\right), 25.9$ ($\mathrm{CH}, \mathrm{C}-20$), $25.8\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 21.1(\mathrm{C}, \mathrm{C}-9), 20.6\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 19.6$ $\left(\mathrm{CH}_{3}, \mathrm{C}-18\right), 19.1\left(\mathrm{CH}_{3}, \mathrm{C}-30\right), 16.1\left(\mathrm{CH}_{3}, \mathrm{C}-29\right), 12.3\left(\mathrm{CH}_{3}, \mathrm{C}-27\right)$; sugar moiety $\delta_{\mathrm{C}} 103.4\left(\mathrm{CH}, \mathrm{C}-1\right.$ '), $72.5\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 72.2\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right)$, $69.8\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 62.4\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right), 170.3,170.2,170.0,169.9,169.6$ ($5 \times$ acetoxy carbonyls), $25.9,21.7,20.5,20.4,20.4(5 \times$ acetoxy methyls).

In Vitro Leishmanicidal Activity. Leishmania major (DESTO) promastigotes were grown at $22-25{ }^{\circ} \mathrm{C}$ in RPMI- 1640 medium ${ }^{14}$ (Sigma) containing 10% heat-inactivated fetal bovine serum (FBS). Logrithmic phase of growth was maintained, and the final concentration of parasites was adjusted to 1×10^{6} cells $/ \mathrm{mL}$. The test compound (1 mg) was dissolved in $50 \mu \mathrm{~L}$ of DMSO. Then the volume was adjusted to 1 mL with complete media. In a 96 -well microtiter plate, $180 \mu \mathrm{~L}$ of medium was added in different wells. Then $20 \mu \mathrm{~L}$ of the test compound was added in the medium and serially diluted. A total of $100 \mu \mathrm{~L}$ of parasite suspension was added into each well of the 96 -well plates. Plates were incubated at $21-22^{\circ} \mathrm{C}$ for 72 h . Cell viability was examined microscopically on an improved Neubauer counting chamber, and IC_{50} values of compounds possessing antileishmanial activity were calculated by Ezfit 5.03 (Perrella Scientific software). All assays were run in duplicate. Compound $\mathbf{1}$ was not screened due to insufficient quantity.

Cytotoxicity. Cytoxicity of compounds was evaluated in 96 -well flat-bottom microplates using the standard MTT (3-[4,5-dimethylthi-azole-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay. ${ }^{15,16}$ For this purpose, 3T3 cells (mouse fibroblasts) were cultured in Dulbecco's modified Eagle's medium, supplemented with 5\% fetal bovine serum (FBS), $100 \mathrm{IU} / \mathrm{mL}$ penicillin, and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin by using a $25 \mathrm{~cm}^{2}$ flask, in a $5 \% \mathrm{CO}_{2}$ incubator at $37{ }^{\circ} \mathrm{C}$. Exponentially growing cells were harvested, counted with a hemocytometer, and diluted with a particular medium. Cell cultures with a concentration of 3×10^{4} cells $/ \mathrm{mL}$ were prepared and were plated (100 $\mu \mathrm{L} /$ well) onto 96 -well plates. After overnight incubation, medium was removed and $200 \mu \mathrm{~L}$ of fresh medium was added with different concentrations of compounds ($1-100 \mu \mathrm{~mol}$). After $72 \mathrm{~h}, 50 \mu \mathrm{~L}$ of MTT $(2 \mathrm{mg} / \mathrm{mL})$ was added to each well and incubation was continued for 4 h . Subsequently, $100 \mu \mathrm{~L}$ of DMSO was added to each well. The extent of MTT reduction to formazan within cells was calculated by measurement of the absorbance at 540 nm using a microplate ELISA reader. Cytotoxicity was recorded as the concentration causing 50\% growth inhibition.

Acknowledgment. We are grateful to the Higher Education Commission, Islamabad, for financial support.

Supporting Information Available: This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Subarnas, A.; Oshima, Y.; Hikino, H. Phytochemistry 1991, 30, 27772780.
(2) Calis, I.; Zor, M.; Saracoglu, I.; Isimer, A.; Ruegger, H. J. Nat. Prod. 1996, 59, 1019-1023.
(3) El-Sebakhy, N. A.; Assad, A. M.; Abdallah, R. M.; Toaima, S. M.; AbdelKader, M. S.; Stermitz, F. R. Phytochemistry 1994, 36, 1387-1389.
(4) Bedir, E.; Calis, I.; Zerbe, O.; Sticher, O. J. Nat. Prod. 1998, 61, 503505.
(5) Calis, I.; Koyunoglu, S.; Yesilada, A.; Brun, R.; Ruedi, P.; Tasdemir, D. Chem. Biodiversity 2006, 3, 923-929.
(6) Ozipek, M.; Donmez, A. A.; Calis, I.; Brun, R.; Ruedi, P.; Tasdemir, D. Phytochemistry 2005, 66, 1168-1173.
(7) Nishida, M.; Yoshimitsu, H.; Nohara, T. Chem. Pharm. Bull. 2003, 51, 1117-1118.
(8) Liu, Y.; Chen, D.; Si, J.; Tu, G.; An, D. J. Nat. Prod. 2002, 65, 14861488.
(9) Mamedova, R. P.; Agzamova, M. A.; Isaev, M. I. Chem. Nat. Compd. 2003, 39, 470-474.
(10) Seo, S.; Tomita, Y.; Tori, K.; Yoshimura, Y. J. Am. Chem. Soc. 1978, 100, 3331-3339.
(11) Radwan, M. M.; Farooq, A.; El-Sebakhy, N. A.; Asaad, A. M.; Toaima, S. M.; Kingston, D. G. I. J. Nat. Prod. 2004, 67, 487-490.
(12) Kadota, S.; Li, J. X.; Tanaka, K.; Namba, T. Tetrahedron 1995, 51, 1143-1166.
(13) Mamedova, R. P.; Agzamova, M. A.; Isaev, M. I. Chem. Nat. Compd. 2002, 38, 579-582.
(14) Habtemariam, S. BioMedCentral Pharmacol. 2003, 3, 6-11.
(15) Mosmann, T. J. Immunol. Methods 1983, 65, 55-63.
(16) Yeskaliyeva, B.; Mesaik, M. A.; Abbaskhan, A.; Kulsoom, A.; Burasheva, G. S.; Abilov, Z. A.; Choudhary, M. I. Phytochemistry 2006, 67, 2392-2397.
NP800161J

[^0]: * Corresponding author. Tel: +92-21-4824924-5; 4819010. Fax: $+92-$ 21-4819018-9. E-mail: hej@cyber.net.pk.

